Source code for imblearn.under_sampling.prototype_selection.one_sided_selection

"""Class to perform under-sampling based on one-sided selection method."""

# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
#          Christos Aridas
# License: MIT

from __future__ import division

from collections import Counter

import numpy as np
from sklearn.neighbors import KNeighborsClassifier, NearestNeighbors
from sklearn.utils import check_random_state

from ..base import BaseCleaningSampler
from .tomek_links import TomekLinks
from ...utils.deprecation import deprecate_parameter


[docs]class OneSidedSelection(BaseCleaningSampler): """Class to perform under-sampling based on one-sided selection method. Parameters ---------- ratio : str, dict, or callable, optional (default='auto') Ratio to use for resampling the data set. - If ``str``, has to be one of: (i) ``'minority'``: resample the minority class; (ii) ``'majority'``: resample the majority class, (iii) ``'not minority'``: resample all classes apart of the minority class, (iv) ``'all'``: resample all classes, and (v) ``'auto'``: correspond to ``'all'`` with for over-sampling methods and ``'not minority'`` for under-sampling methods. The classes targeted will be over-sampled or under-sampled to achieve an equal number of sample with the majority or minority class. - If ``dict``, the keys correspond to the targeted classes. The values correspond to the desired number of samples. - If callable, function taking ``y`` and returns a ``dict``. The keys correspond to the targeted classes. The values correspond to the desired number of samples. return_indices : bool, optional (default=False) Whether or not to return the indices of the samples randomly selected from the majority class. random_state : int, RandomState instance or None, optional (default=None) If int, ``random_state`` is the seed used by the random number generator; If ``RandomState`` instance, random_state is the random number generator; If ``None``, the random number generator is the ``RandomState`` instance used by ``np.random``. size_ngh : int, optional (default=None) Size of the neighbourhood to consider to compute the average distance to the minority point samples. .. deprecated:: 0.2 ``size_ngh`` is deprecated from 0.2 and will be replaced in 0.4 Use ``n_neighbors`` instead. n_neighbors : int or object, optional (default=\ KNeighborsClassifier(n_neighbors=1)) If ``int``, size of the neighbourhood to consider to compute the average distance to the minority point samples. If object, an object inherited from :class:`sklearn.neigbors.KNeighborsClassifier` should be passed. n_seeds_S : int, optional (default=1) Number of samples to extract in order to build the set S. n_jobs : int, optional (default=1) The number of threads to open if possible. Notes ----- The method is based on [1]_. Supports mutli-class resampling. Examples -------- >>> from collections import Counter >>> from sklearn.datasets import make_classification >>> from imblearn.under_sampling import \ OneSidedSelection # doctest: +NORMALIZE_WHITESPACE >>> X, y = make_classification(n_classes=2, class_sep=2, ... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, ... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) >>> print('Original dataset shape {}'.format(Counter(y))) Original dataset shape Counter({1: 900, 0: 100}) >>> oss = OneSidedSelection(random_state=42) >>> X_res, y_res = oss.fit_sample(X, y) >>> print('Resampled dataset shape {}'.format(Counter(y_res))) Resampled dataset shape Counter({1: 495, 0: 100}) References ---------- .. [1] M. Kubat, S. Matwin, "Addressing the curse of imbalanced training sets: one-sided selection," In ICML, vol. 97, pp. 179-186, 1997. """
[docs] def __init__(self, ratio='auto', return_indices=False, random_state=None, size_ngh=None, n_neighbors=None, n_seeds_S=1, n_jobs=1): super(OneSidedSelection, self).__init__(ratio=ratio, random_state=random_state) self.return_indices = return_indices self.size_ngh = size_ngh self.n_neighbors = n_neighbors self.n_seeds_S = n_seeds_S self.n_jobs = n_jobs
def _validate_estimator(self): """Private function to create the NN estimator""" # FIXME: Deprecated in 0.2. To be removed in 0.4. deprecate_parameter(self, '0.2', 'size_ngh', 'n_neighbors') if self.n_neighbors is None: self.estimator_ = KNeighborsClassifier( n_neighbors=1, n_jobs=self.n_jobs) elif isinstance(self.n_neighbors, int): self.estimator_ = KNeighborsClassifier( n_neighbors=self.n_neighbors, n_jobs=self.n_jobs) elif isinstance(self.n_neighbors, KNeighborsClassifier): self.estimator_ = self.n_neighbors else: raise ValueError('`n_neighbors` has to be a int or an object' ' inhereited from KNeighborsClassifier.' ' Got {} instead.'.format(type(self.n_neighbors))) def _sample(self, X, y): """Resample the dataset. Parameters ---------- X : ndarray, shape (n_samples, n_features) Matrix containing the data which have to be sampled. y : ndarray, shape (n_samples, ) Corresponding label for each sample in X. Returns ------- X_resampled : ndarray, shape (n_samples_new, n_features) The array containing the resampled data. y_resampled : ndarray, shape (n_samples_new) The corresponding label of `X_resampled` idx_under : ndarray, shape (n_samples, ) If `return_indices` is `True`, a boolean array will be returned containing the which samples have been selected. """ self._validate_estimator() random_state = check_random_state(self.random_state) target_stats = Counter(y) class_minority = min(target_stats, key=target_stats.get) X_resampled = np.empty((0, X.shape[1]), dtype=X.dtype) y_resampled = np.empty((0, ), dtype=y.dtype) if self.return_indices: idx_under = np.empty((0, ), dtype=int) for target_class in np.unique(y): if target_class in self.ratio_.keys(): # select a sample from the current class idx_maj = np.flatnonzero(y == target_class) idx_maj_sample = idx_maj[random_state.randint( low=0, high=target_stats[target_class], size=self.n_seeds_S)] maj_sample = X[idx_maj_sample] # create the set composed of all minority samples and one # sample from the current class. C_x = np.append(X[y == class_minority], maj_sample, axis=0) C_y = np.append(y[y == class_minority], [target_class] * self.n_seeds_S) # create the set S with removing the seed from S # since that it will be added anyway idx_maj_extracted = np.delete(idx_maj, idx_maj_sample, axis=0) S_x = X[idx_maj_extracted] S_y = y[idx_maj_extracted] self.estimator_.fit(C_x, C_y) pred_S_y = self.estimator_.predict(S_x) sel_x = S_x[np.flatnonzero(pred_S_y != S_y), :] sel_y = S_y[np.flatnonzero(pred_S_y != S_y)] if self.return_indices: idx_tmp = idx_maj_extracted[ np.flatnonzero(pred_S_y != S_y)] idx_under = np.concatenate( (idx_under, idx_maj_sample, idx_tmp), axis=0) X_resampled = np.concatenate( (X_resampled, maj_sample, sel_x), axis=0) y_resampled = np.concatenate( (y_resampled, [target_class] * self.n_seeds_S, sel_y), axis=0) else: X_resampled = np.concatenate( (X_resampled, X[y == target_class]), axis=0) y_resampled = np.concatenate( (y_resampled, y[y == target_class]), axis=0) if self.return_indices: idx_under = np.concatenate( (idx_under, np.flatnonzero(y == target_class)), axis=0) # find the nearest neighbour of every point nn = NearestNeighbors(n_neighbors=2, n_jobs=self.n_jobs) nn.fit(X_resampled) nns = nn.kneighbors(X_resampled, return_distance=False)[:, 1] links = TomekLinks.is_tomek(y_resampled, nns, [c for c in np.unique(y) if (c != class_minority and c in self.ratio_.keys())]) if self.return_indices: return (X_resampled[np.logical_not(links)], y_resampled[np.logical_not(links)], idx_under[np.logical_not(links)]) else: return (X_resampled[np.logical_not(links)], y_resampled[np.logical_not(links)])