imblearn.ensemble.BalanceCascade¶
-
class
imblearn.ensemble.BalanceCascade(ratio='auto', return_indices=False, random_state=None, n_max_subset=None, classifier=None, estimator=None, **kwargs)[source][source]¶ Create an ensemble of balanced sets by iteratively under-sampling the imbalanced dataset using an estimator.
This method iteratively select subset and make an ensemble of the different sets. The selection is performed using a specific classifier.
Parameters: ratio : str, dict, or callable, optional (default=’auto’)
Ratio to use for resampling the data set.
- If
str, has to be one of: (i)'minority': resample the minority class; (ii)'majority': resample the majority class, (iii)'not minority': resample all classes apart of the minority class, (iv)'all': resample all classes, and (v)'auto': correspond to'all'with for over-sampling methods and'not minority'for under-sampling methods. The classes targeted will be over-sampled or under-sampled to achieve an equal number of sample with the majority or minority class. - If
dict, the keys correspond to the targeted classes. The values correspond to the desired number of samples. - If callable, function taking
yand returns adict. The keys correspond to the targeted classes. The values correspond to the desired number of samples.
return_indices : bool, optional (default=True)
Whether or not to return the indices of the samples randomly selected from the majority class.
random_state : int, RandomState instance or None, optional (default=None)
If int,
random_stateis the seed used by the random number generator; IfRandomStateinstance, random_state is the random number generator; IfNone, the random number generator is theRandomStateinstance used bynp.random.n_max_subset : int or None, optional (default=None)
Maximum number of subsets to generate. By default, all data from the training will be selected that could lead to a large number of subsets. We can probably deduce this number empirically.
classifier : str, optional (default=None)
The classifier that will be selected to confront the prediction with the real labels. The choices are the following:
'knn','decision-tree','random-forest','adaboost','gradient-boosting', and'linear-svm'.Deprecated since version 0.2:
classifieris deprecated from 0.2 and will be replaced in 0.4. Useestimatorinstead.estimator : object, optional (default=KNeighborsClassifier())
An estimator inherited from
sklearn.base.ClassifierMixinand having an attributepredict_proba.bootstrap : bool, optional (default=True)
Whether to bootstrap the data before each iteration.
**kwargs : keywords
The parameters associated with the classifier provided.
Deprecated since version 0.2:
**kwargshas been deprecated from 0.2 and will be replaced in 0.4. Useestimatorobject instead to pass parameters associated to an estimator.Notes
The method is described in [R25].
Supports mutli-class resampling.
References
[R25] (1, 2) X. Y. Liu, J. Wu and Z. H. Zhou, “Exploratory Undersampling for Class-Imbalance Learning,” in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539-550, April 2009. Examples
>>> from collections import Counter >>> from sklearn.datasets import make_classification >>> from imblearn.ensemble import BalanceCascade >>> X, y = make_classification(n_classes=2, class_sep=2, ... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, ... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) >>> print('Original dataset shape {}'.format(Counter(y))) Original dataset shape Counter({1: 900, 0: 100}) >>> bc = BalanceCascade(random_state=42) >>> X_res, y_res = bc.fit_sample(X, y) >>> print('Resampled dataset shape {}'.format(Counter(y_res[0]))) Resampled dataset shape Counter({...})
Methods
fit(X, y)Find the classes statistics before to perform sampling. fit_sample(X, y)Fit the statistics and resample the data directly. get_params([deep])Get parameters for this estimator. sample(X, y)Resample the dataset. set_params(**params)Set the parameters of this estimator. -
__init__(ratio='auto', return_indices=False, random_state=None, n_max_subset=None, classifier=None, estimator=None, **kwargs)[source][source]¶
Methods
__init__([ratio, return_indices, ...])fit(X, y)Find the classes statistics before to perform sampling. fit_sample(X, y)Fit the statistics and resample the data directly. get_params([deep])Get parameters for this estimator. sample(X, y)Resample the dataset. set_params(**params)Set the parameters of this estimator. -
fit(X, y)[source][source]¶ Find the classes statistics before to perform sampling.
Parameters: X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns: self : object,
Return self.
-
fit_sample(X, y)[source]¶ Fit the statistics and resample the data directly.
Parameters: X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns: X_resampled : ndarray, shape (n_samples_new, n_features)
The array containing the resampled data.
y_resampled : ndarray, shape (n_samples_new)
The corresponding label of X_resampled
-
get_params(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
sample(X, y)[source]¶ Resample the dataset.
Parameters: X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns: X_resampled : ndarray, shape (n_samples_new, n_features)
The array containing the resampled data.
y_resampled : ndarray, shape (n_samples_new)
The corresponding label of X_resampled
- If