imblearn.metrics.classification_report_imbalanced¶
- 
imblearn.metrics.classification_report_imbalanced(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2, alpha=0.1)[source][source]¶
- Build a classification report based on metrics used with imbalanced dataset - Specific metrics have been proposed to evaluate the classification performed on imbalanced dataset. This report compiles the state-of-the-art metrics: precision/recall/specificity, geometric mean, and index balanced accuracy of the geometric mean. - Parameters: - y_true : ndarray, shape (n_samples, ) - Ground truth (correct) target values. - y_pred : ndarray, shape (n_samples, ) - Estimated targets as returned by a classifier. - labels : list, optional - The set of labels to include when - average != 'binary', and their order if- average is None. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average.- target_names : list of strings, optional - Optional display names matching the labels (same order). - sample_weight : ndarray, shape (n_samples, ) - Sample weights. - digits : int, optional (default=2) - Number of digits for formatting output floating point values - alpha : float, optional (default=0.1) - Weighting factor. - Returns: - report : string - Text summary of the precision, recall, specificity, geometric mean, and index balanced accuracy. - Examples - >>> import numpy as np >>> from imblearn.metrics import classification_report_imbalanced >>> y_true = [0, 1, 2, 2, 2] >>> y_pred = [0, 0, 2, 2, 1] # doctest : +NORMALIZE_WHITESPACE >>> target_names = ['class 0', 'class 1', 'class 2'] # doctest : +NORMALIZE_WHITESPACE >>> print(classification_report_imbalanced(y_true, y_pred, target_names=target_names)) pre rec spe f1 geo iba sup class 0 0.50 1.00 0.75 0.67 0.71 0.48 1 class 1 0.00 0.00 0.75 0.00 0.00 0.00 1 class 2 1.00 0.67 1.00 0.80 0.82 0.69 3 avg / total 0.70 0.60 0.90 0.61 0.63 0.51 5