imblearn.under_sampling.RepeatedEditedNearestNeighbours¶
-
class
imblearn.under_sampling.
RepeatedEditedNearestNeighbours
(ratio='auto', return_indices=False, random_state=None, size_ngh=None, n_neighbors=3, max_iter=100, kind_sel='all', n_jobs=-1)[source][source]¶ Class to perform under-sampling based on the repeated edited nearest neighbour method.
Parameters: ratio : str, dict, or callable, optional (default=’auto’)
Ratio to use for resampling the data set.
- If
str
, has to be one of: (i)'minority'
: resample the minority class; (ii)'majority'
: resample the majority class, (iii)'not minority'
: resample all classes apart of the minority class, (iv)'all'
: resample all classes, and (v)'auto'
: correspond to'all'
with for over-sampling methods and'not minority'
for under-sampling methods. The classes targeted will be over-sampled or under-sampled to achieve an equal number of sample with the majority or minority class. - If
dict
, the keys correspond to the targeted classes. The values correspond to the desired number of samples. - If callable, function taking
y
and returns adict
. The keys correspond to the targeted classes. The values correspond to the desired number of samples.
return_indices : bool, optional (default=False)
Whether or not to return the indices of the samples randomly selected from the majority class.
random_state : int, RandomState instance or None, optional (default=None)
If int,
random_state
is the seed used by the random number generator; IfRandomState
instance, random_state is the random number generator; IfNone
, the random number generator is theRandomState
instance used bynp.random
.size_ngh : int, optional (default=None)
Size of the neighbourhood to consider to compute the average distance to the minority point samples.
n_neighbors : int or object, optional (default=3)
If
int
, size of the neighbourhood to consider to compute the average distance to the minority point samples. If object, an estimator that inherits fromsklearn.neighbors.base.KNeighborsMixin
that will be used to find the k_neighbors.max_iter : int, optional (default=100)
Maximum number of iterations of the edited nearest neighbours algorithm for a single run.
kind_sel : str, optional (default=’all’)
Strategy to use in order to exclude samples.
- If
'all'
, all neighbours will have to agree with the samples of interest to not be excluded. - If
'mode'
, the majority vote of the neighbours will be used in order to exclude a sample.
n_jobs : int, optional (default=-1)
The number of thread to open when it is possible.
Notes
The method is based on [R41].
Supports mutli-class resampling.
References
[R41] (1, 2) I. Tomek, “An Experiment with the Edited Nearest-Neighbor Rule,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6(6), pp. 448-452, June 1976. Examples
>>> from collections import Counter >>> from sklearn.datasets import make_classification >>> from imblearn.under_sampling import RepeatedEditedNearestNeighbours # doctest : +NORMALIZE_WHITESPACE >>> X, y = make_classification(n_classes=2, class_sep=2, ... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, ... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) >>> print('Original dataset shape {}'.format(Counter(y))) Original dataset shape Counter({1: 900, 0: 100}) >>> renn = RepeatedEditedNearestNeighbours(random_state=42) >>> X_res, y_res = renn.fit_sample(X, y) >>> print('Resampled dataset shape {}'.format(Counter(y_res))) Resampled dataset shape Counter({1: 887, 0: 100})
Methods
fit
(X, y)Find the classes statistics before to perform sampling. fit_sample
(X, y)Fit the statistics and resample the data directly. get_params
([deep])Get parameters for this estimator. sample
(X, y)Resample the dataset. set_params
(**params)Set the parameters of this estimator. -
__init__
(ratio='auto', return_indices=False, random_state=None, size_ngh=None, n_neighbors=3, max_iter=100, kind_sel='all', n_jobs=-1)[source][source]¶
Methods
__init__
([ratio, return_indices, ...])fit
(X, y)Find the classes statistics before to perform sampling. fit_sample
(X, y)Fit the statistics and resample the data directly. get_params
([deep])Get parameters for this estimator. sample
(X, y)Resample the dataset. set_params
(**params)Set the parameters of this estimator. -
fit
(X, y)[source]¶ Find the classes statistics before to perform sampling.
Parameters: X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns: self : object,
Return self.
-
fit_sample
(X, y)[source]¶ Fit the statistics and resample the data directly.
Parameters: X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns: X_resampled : ndarray, shape (n_samples_new, n_features)
The array containing the resampled data.
y_resampled : ndarray, shape (n_samples_new)
The corresponding label of X_resampled
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
sample
(X, y)[source]¶ Resample the dataset.
Parameters: X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns: X_resampled : ndarray, shape (n_samples_new, n_features)
The array containing the resampled data.
y_resampled : ndarray, shape (n_samples_new)
The corresponding label of X_resampled
- If